Content
Data
license:
Version number: procps-ng 3.3.15 (in Debian 10)
Developer / owner:
Short description:
Manual page and help for the top linux command. The top program provides a dynamic, real-time view of the running system. Displays system summary information and a list of processes or threads currently managed by the Linux kernel. The types of system summary information displayed, as well as the type, order, and size information displayed for processes, are all configurable by the user and remain after the reboot. The program provides a limited interactive interface for managing processes, as well as a much more extensive interface for personal configuration - covering all aspects of how it works.
Man page output
man top
TOP(1) User Commands TOP(1)
NAME
top - display Linux processes
SYNOPSIS
top -hv|-bcEHiOSs1 -d secs -n max -u|U user -p pid -o fld -w [cols]
The traditional switches `-' and whitespace are optional.
DESCRIPTION
The top program provides a dynamic real-time view of a running system. It can dis-
play system summary information as well as a list of processes or threads currently
being managed by the Linux kernel. The types of system summary information shown and
the types, order and size of information displayed for processes are all user config-
urable and that configuration can be made persistent across restarts.
The program provides a limited interactive interface for process manipulation as well
as a much more extensive interface for personal configuration -- encompassing every
aspect of its operation. And while top is referred to throughout this document, you
are free to name the program anything you wish. That new name, possibly an alias,
will then be reflected on top's display and used when reading and writing a configu-
ration file.
OVERVIEW
Documentation
The remaining Table of Contents
OVERVIEW
Operation
Linux Memory Types
1. COMMAND-LINE Options
2. SUMMARY Display
a. UPTIME and LOAD Averages
b. TASK and CPU States
c. MEMORY Usage
3. FIELDS / Columns Display
a. DESCRIPTIONS of Fields
b. MANAGING Fields
4. INTERACTIVE Commands
a. GLOBAL Commands
b. SUMMARY AREA Commands
c. TASK AREA Commands
1. Appearance
2. Content
3. Size
4. Sorting
d. COLOR Mapping
5. ALTERNATE-DISPLAY Provisions
a. WINDOWS Overview
b. COMMANDS for Windows
c. SCROLLING a Window
d. SEARCHING in a Window
e. FILTERING in a Window
6. FILES
a. PERSONAL Configuration File
b. ADDING INSPECT Entries
c. SYSTEM Configuration File
d. SYSTEM Restrictions File
7. STUPID TRICKS Sampler
a. Kernel Magic
b. Bouncing Windows
c. The Big Bird Window
d. The Ol' Switcheroo
8. BUGS, 9. SEE Also
Operation
When operating top, the two most important keys are the help (h or ?) key and quit
(`q') key. Alternatively, you could simply use the traditional interrupt key (^C)
when you're done.
When started for the first time, you'll be presented with these traditional elements
on the main top screen: 1) Summary Area; 2) Fields/Columns Header; 3) Task Area.
Each of these will be explored in the sections that follow. There is also an In-
put/Message line between the Summary Area and Columns Header which needs no further
explanation.
The main top screen is generally quite adaptive to changes in terminal dimensions un-
der X-Windows. Other top screens may be less so, especially those with static text.
It ultimately depends, however, on your particular window manager and terminal emula-
tor. There may be occasions when their view of terminal size and current contents
differs from top's view, which is always based on operating system calls.
Following any re-size operation, if a top screen is corrupted, appears incomplete or
disordered, simply typing something innocuous like a punctuation character or cursor
motion key will usually restore it. In extreme cases, the following sequence almost
certainly will:
key/cmd objective
^Z suspend top
fg resume top
<Left> force a screen redraw (if necessary)
But if the display is still corrupted, there is one more step you could try. Insert
this command after top has been suspended but before resuming it.
key/cmd objective
reset restore your terminal settings
Note: the width of top's display will be limited to 512 positions. Displaying all
fields requires approximately 250 characters. Remaining screen width is usually al-
located to any variable width columns currently visible. The variable width columns,
such as COMMAND, are noted in topic 3a. DESCRIPTIONS of Fields. Actual output width
may also be influenced by the -w switch, which is discussed in topic 1. COMMAND-LINE
Options.
Lastly, some of top's screens or functions require the use of cursor motion keys like
the standard arrow keys plus the Home, End, PgUp and PgDn keys. If your terminal or
emulator does not provide those keys, the following combinations are accepted as al-
ternatives:
key equivalent-key-combinations
Up alt + \ or alt + k
Down alt + / or alt + j
Left alt + < or alt + h
Right alt + > or alt + l (lower case L)
PgUp alt + Up or alt + ctrl + k
PgDn alt + Down or alt + ctrl + j
Home alt + Left or alt + ctrl + h
End alt + Right or alt + ctrl + l
The Up and Down arrow keys have special significance when prompted for line input
terminated with the <Enter> key. Those keys, or their aliases, can be used to re-
trieve previous input lines which can then be edited and re-input. And there are
four additional keys available with line oriented input.
key special-significance
Up recall older strings for re-editing
Down recall newer strings or erase entire line
Insert toggle between insert and overtype modes
Delete character removed at cursor, moving others left
Home jump to beginning of input line
End jump to end of input line
Linux Memory Types
For our purposes there are three types of memory, and one is optional. First is
physical memory, a limited resource where code and data must reside when executed or
referenced. Next is the optional swap file, where modified (dirty) memory can be
saved and later retrieved if too many demands are made on physical memory. Lastly we
have virtual memory, a nearly unlimited resource serving the following goals:
1. abstraction, free from physical memory addresses/limits
2. isolation, every process in a separate address space
3. sharing, a single mapping can serve multiple needs
4. flexibility, assign a virtual address to a file
Regardless of which of these forms memory may take, all are managed as pages (typi-
cally 4096 bytes) but expressed by default in top as KiB (kibibyte). The memory dis-
cussed under topic `2c. MEMORY Usage' deals with physical memory and the swap file
for the system as a whole. The memory reviewed in topic `3. FIELDS / Columns Dis-
play' embraces all three memory types, but for individual processes.
For each such process, every memory page is restricted to a single quadrant from the
table below. Both physical memory and virtual memory can include any of the four,
while the swap file only includes #1 through #3. The memory in quadrant #4, when
modified, acts as its own dedicated swap file.
Private | Shared
1 | 2
Anonymous . stack |
. malloc() |
. brk()/sbrk() | . POSIX shm*
. mmap(PRIVATE, ANON) | . mmap(SHARED, ANON)
-----------------------+----------------------
. mmap(PRIVATE, fd) | . mmap(SHARED, fd)
File-backed . pgms/shared libs |
3 | 4
The following may help in interpreting process level memory values displayed as scal-
able columns and discussed under topic `3a. DESCRIPTIONS of Fields'.
%MEM - simply RES divided by total physical memory
CODE - the `pgms' portion of quadrant 3
DATA - the entire quadrant 1 portion of VIRT plus all
explicit mmap file-backed pages of quadrant 3
RES - anything occupying physical memory which, beginning with
Linux-4.5, is the sum of the following three fields:
RSan - quadrant 1 pages, which include any
former quadrant 3 pages if modified
RSfd - quadrant 3 and quadrant 4 pages
RSsh - quadrant 2 pages
RSlk - subset of RES which cannot be swapped out (any quadrant)
SHR - subset of RES (excludes 1, includes all 2 & 4, some 3)
SWAP - potentially any quadrant except 4
USED - simply the sum of RES and SWAP
VIRT - everything in-use and/or reserved (all quadrants)
Note: Even though program images and shared libraries are considered private to a
process, they will be accounted for as shared (SHR) by the kernel.
1. COMMAND-LINE Options
The command-line syntax for top consists of:
-hv|-bcEHiOSs1 -d secs -n max -u|U user -p pid -o fld -w [cols]
The typically mandatory switch (`-') and even whitespace are completely optional.
-h | -v :Help/Version
Show library version and the usage prompt, then quit.
-b :Batch-mode operation
Starts top in Batch mode, which could be useful for sending output from top to
other programs or to a file. In this mode, top will not accept input and runs
until the iterations limit you've set with the `-n' command-line option or until
killed.
-c :Command-line/Program-name toggle
Starts top with the last remembered `c' state reversed. Thus, if top was dis-
playing command lines, now that field will show program names, and vice versa.
See the `c' interactive command for additional information.
-d :Delay-time interval as: -d ss.t (secs.tenths)
Specifies the delay between screen updates, and overrides the corresponding
value in one's personal configuration file or the startup default. Later this
can be changed with the `d' or `s' interactive commands.
Fractional seconds are honored, but a negative number is not allowed. In all
cases, however, such changes are prohibited if top is running in Secure mode,
except for root (unless the `s' command-line option was used). For additional
information on Secure mode see topic 6d. SYSTEM Restrictions File.
-E :Extend-Memory-Scaling as: -E k | m | g | t | p | e
Instructs top to force summary area memory to be scaled as:
k - kibibytes
m - mebibytes
g - gibibytes
t - tebibytes
p - pebibytes
e - exbibytes
Later this can be changed with the `E' command toggle.
-H :Threads-mode operation
Instructs top to display individual threads. Without this command-line option a
summation of all threads in each process is shown. Later this can be changed
with the `H' interactive command.
-i :Idle-process toggle
Starts top with the last remembered `i' state reversed. When this toggle is
Off, tasks that have not used any CPU since the last update will not be dis-
played. For additional information regarding this toggle see topic 4c. TASK
AREA Commands, SIZE.
-n :Number-of-iterations limit as: -n number
Specifies the maximum number of iterations, or frames, top should produce before
ending.
-o :Override-sort-field as: -o fieldname
Specifies the name of the field on which tasks will be sorted, independent of
what is reflected in the configuration file. You can prepend a `+' or `-' to
the field name to also override the sort direction. A leading `+' will force
sorting high to low, whereas a `-' will ensure a low to high ordering.
This option exists primarily to support automated/scripted batch mode operation.
-O :Output-field-names
This option acts as a form of help for the above -o option. It will cause top
to print each of the available field names on a separate line, then quit. Such
names are subject to NLS (National Language Support) translation.
-p :Monitor-PIDs mode as: -pN1 -pN2 ... or -pN1,N2,N3 ...
Monitor only processes with specified process IDs. This option can be given up
to 20 times, or you can provide a comma delimited list with up to 20 pids. Co-
mingling both approaches is permitted.
A pid value of zero will be treated as the process id of the top program itself
once it is running.
This is a command-line option only and should you wish to return to normal oper-
ation, it is not necessary to quit and restart top -- just issue any of these
interactive commands: `=', `u' or `U'.
The `p', `u' and `U' command-line options are mutually exclusive.
-s :Secure-mode operation
Starts top with secure mode forced, even for root. This mode is far better con-
trolled through a system configuration file (see topic 6. FILES).
-S :Cumulative-time toggle
Starts top with the last remembered `S' state reversed. When Cumulative time
mode is On, each process is listed with the cpu time that it and its dead chil-
dren have used. See the `S' interactive command for additional information re-
garding this mode.
-u | -U :User-filter-mode as: -u | -U number or name
Display only processes with a user id or user name matching that given. The
`-u' option matches on effective user whereas the `-U' option matches on any
user (real, effective, saved, or filesystem).
Prepending an exclamation point (`!') to the user id or name instructs top to
display only processes with users not matching the one provided.
The `p', `u' and `U' command-line options are mutually exclusive.
-w :Output-width-override as: -w [ number ]
In Batch mode, when used without an argument top will format output using the
COLUMNS= and LINES= environment variables, if set. Otherwise, width will be
fixed at the maximum 512 columns. With an argument, output width can be de-
creased or increased (up to 512) but the number of rows is considered unlimited.
In normal display mode, when used without an argument top will attempt to format
output using the COLUMNS= and LINES= environment variables, if set. With an ar-
gument, output width can only be decreased, not increased. Whether using envi-
ronment variables or an argument with -w, when not in Batch mode actual terminal
dimensions can never be exceeded.
Note: Without the use of this command-line option, output width is always based
on the terminal at which top was invoked whether or not in Batch mode.
-1 :Single/Separate-Cpu-States toggle
Starts top with the last remembered Cpu States portion of the summary area re-
versed. Either all cpu information will be displayed in a single line or each
cpu will be displayed separately, depending on the state of the NUMA Node com-
mand toggle ('2').
See the `1' and '2' interactive commands for additional information.
2. SUMMARY Display
Each of the following three areas are individually controlled through one or more in-
teractive commands. See topic 4b. SUMMARY AREA Commands for additional information
regarding these provisions.
2a. UPTIME and LOAD Averages
This portion consists of a single line containing:
program or window name, depending on display mode
current time and length of time since last boot
total number of users
system load avg over the last 1, 5 and 15 minutes
2b. TASK and CPU States
This portion consists of a minimum of two lines. In an SMP environment, additional
lines can reflect individual CPU state percentages.
Line 1 shows total tasks or threads, depending on the state of the Threads-mode tog-
gle. That total is further classified as:
running; sleeping; stopped; zombie
Line 2 shows CPU state percentages based on the interval since the last refresh.
As a default, percentages for these individual categories are displayed. Where two
labels are shown below, those for more recent kernel versions are shown first.
us, user : time running un-niced user processes
sy, system : time running kernel processes
ni, nice : time running niced user processes
id, idle : time spent in the kernel idle handler
wa, IO-wait : time waiting for I/O completion
hi : time spent servicing hardware interrupts
si : time spent servicing software interrupts
st : time stolen from this vm by the hypervisor
In the alternate cpu states display modes, beyond the first tasks/threads line, an
abbreviated summary is shown consisting of these elements:
a b c d
%Cpu(s): 75.0/25.0 100[ ...
Where: a) is the combined us and ni percentage; b) is the sy percentage; c) is the
total; and d) is one of two visual graphs of those representations. See topic 4b.
SUMMARY AREA Commands and the `t' command for additional information on that special
4-way toggle.
2c. MEMORY Usage
This portion consists of two lines which may express values in kibibytes (KiB)
through exbibytes (EiB) depending on the scaling factor enforced with the `E' inter-
active command.
As a default, Line 1 reflects physical memory, classified as:
total, free, used and buff/cache
Line 2 reflects mostly virtual memory, classified as:
total, free, used and avail (which is physical memory)
The avail number on line 2 is an estimation of physical memory available for starting
new applications, without swapping. Unlike the free field, it attempts to account
for readily reclaimable page cache and memory slabs. It is available on kernels
3.14, emulated on kernels 2.6.27+, otherwise the same as free.
In the alternate memory display modes, two abbreviated summary lines are shown con-
sisting of these elements:
a b c
GiB Mem : 18.7/15.738 [ ...
GiB Swap: 0.0/7.999 [ ...
Where: a) is the percentage used; b) is the total available; and c) is one of two
visual graphs of those representations.
In the case of physical memory, the percentage represents the total minus the esti-
mated avail noted above. The `Mem' graph itself is divided between used and any re-
maining memory not otherwise accounted for by avail. See topic 4b. SUMMARY AREA Com-
mands and the `m' command for additional information on that special 4-way toggle.
This table may help in interpreting the scaled values displayed:
KiB = kibibyte = 1024 bytes
MiB = mebibyte = 1024 KiB = 1,048,576 bytes
GiB = gibibyte = 1024 MiB = 1,073,741,824 bytes
TiB = tebibyte = 1024 GiB = 1,099,511,627,776 bytes
PiB = pebibyte = 1024 TiB = 1,125,899,906,842,624 bytes
EiB = exbibyte = 1024 PiB = 1,152,921,504,606,846,976 bytes
3. FIELDS / Columns
3a. DESCRIPTIONS of Fields
Listed below are top's available process fields (columns). They are shown in strict
ascii alphabetical order. You may customize their position and whether or not they
are displayable with the `f' or `F' (Fields Management) interactive commands.
Any field is selectable as the sort field, and you control whether they are sorted
high-to-low or low-to-high. For additional information on sort provisions see topic
4c. TASK AREA Commands, SORTING.
The fields related to physical memory or virtual memory reference `(KiB)' which is
the unsuffixed display mode. Such fields may, however, be scaled from KiB through
PiB. That scaling is influenced via the `e' interactive command or established for
startup through a build option.
1. %CPU -- CPU Usage
The task's share of the elapsed CPU time since the last screen update, expressed
as a percentage of total CPU time.
In a true SMP environment, if a process is multi-threaded and top is not operat-
ing in Threads mode, amounts greater than 100% may be reported. You toggle
Threads mode with the `H' interactive command.
Also for multi-processor environments, if Irix mode is Off, top will operate in
Solaris mode where a task's cpu usage will be divided by the total number of
CPUs. You toggle Irix/Solaris modes with the `I' interactive command.
2. %MEM -- Memory Usage (RES)
A task's currently resident share of available physical memory.
See `OVERVIEW, Linux Memory Types' for additional details.
3. CGNAME -- Control Group Name
The name of the control group to which a process belongs, or `-' if not applica-
ble for that process.
This will typically be the last entry in the full list of control groups as shown
under the next heading (CGROUPS). And as is true there, this field is also vari-
able width.
4. CGROUPS -- Control Groups
The names of the control group(s) to which a process belongs, or `-' if not ap-
plicable for that process.
Control Groups provide for allocating resources (cpu, memory, network bandwidth,
etc.) among installation-defined groups of processes. They enable fine-grained
control over allocating, denying, prioritizing, managing and monitoring those re-
sources.
Many different hierarchies of cgroups can exist simultaneously on a system and
each hierarchy is attached to one or more subsystems. A subsystem represents a
single resource.
Note: The CGROUPS field, unlike most columns, is not fixed-width. When dis-
played, it plus any other variable width columns will be allocated all remaining
screen width (up to the maximum 512 characters). Even so, such variable width
fields could still suffer truncation. See topic 5c. SCROLLING a Window for addi-
tional information on accessing any truncated data.
5. CODE -- Code Size (KiB)
The amount of physical memory currently devoted to executable code, also known as
the Text Resident Set size or TRS.
See `OVERVIEW, Linux Memory Types' for additional details.
6. COMMAND -- Command Name or Command Line
Display the command line used to start a task or the name of the associated pro-
gram. You toggle between command line and name with `c', which is both a com-
mand-line option and an interactive command.
When you've chosen to display command lines, processes without a command line
(like kernel threads) will be shown with only the program name in brackets, as in
this example:
[kthreadd]
This field may also be impacted by the forest view display mode. See the `V' in-
teractive command for additional information regarding that mode.
Note: The COMMAND field, unlike most columns, is not fixed-width. When dis-
played, it plus any other variable width columns will be allocated all remaining
screen width (up to the maximum 512 characters). Even so, such variable width
fields could still suffer truncation. This is especially true for this field
when command lines are being displayed (the `c' interactive command.) See topic
5c. SCROLLING a Window for additional information on accessing any truncated
data.
7. DATA -- Data + Stack Size (KiB)
The amount of private memory reserved by a process. It is also known as the Data
Resident Set or DRS. Such memory may not yet be mapped to physical memory (RES)
but will always be included in the virtual memory (VIRT) amount.
See `OVERVIEW, Linux Memory Types' for additional details.
8. ENVIRON -- Environment variables
Display all of the environment variables, if any, as seen by the respective pro-
cesses. These variables will be displayed in their raw native order, not the
sorted order you are accustomed to seeing with an unqualified `set'.
Note: The ENVIRON field, unlike most columns, is not fixed-width. When dis-
played, it plus any other variable width columns will be allocated all remaining
screen width (up to the maximum 512 characters). Even so, such variable width
fields could still suffer truncation. This is especially true for this field.
See topic 5c. SCROLLING a Window for additional information on accessing any
truncated data.
9. Flags -- Task Flags
This column represents the task's current scheduling flags which are expressed in
hexadecimal notation and with zeros suppressed. These flags are officially docu-
mented in <linux/sched.h>.
10. GID -- Group Id
The effective group ID.
11. GROUP -- Group Name
The effective group name.
12. LXC -- Lxc Container Name
The name of the lxc container within which a task is running. If a process is
not running inside a container, a dash (`-') will be shown.
13. NI -- Nice Value
The nice value of the task. A negative nice value means higher priority, whereas
a positive nice value means lower priority. Zero in this field simply means pri-
ority will not be adjusted in determining a task's dispatch-ability.
14. NU -- Last known NUMA node
A number representing the NUMA node associated with the last used processor
(`P'). When -1 is displayed it means that NUMA information is not available.
See the `'2' and `3' interactive commands for additional NUMA provisions affect-
ing the summary area.
15. OOMa -- Out of Memory Adjustment Factor
The value, ranging from -1000 to +1000, added to the current out of memory score
(OOMs) which is then used to determine which task to kill when memory is ex-
hausted.
16. OOMs -- Out of Memory Score
The value, ranging from 0 to +1000, used to select task(s) to kill when memory is
exhausted. Zero translates to `never kill' whereas 1000 means `always kill'.
17. P -- Last used CPU (SMP)
A number representing the last used processor. In a true SMP environment this
will likely change frequently since the kernel intentionally uses weak affinity.
Also, the very act of running top may break this weak affinity and cause more
processes to change CPUs more often (because of the extra demand for cpu time).
18. PGRP -- Process Group Id
Every process is member of a unique process group which is used for distribution
of signals and by terminals to arbitrate requests for their input and output.
When a process is created (forked), it becomes a member of the process group of
its parent. By convention, this value equals the process ID (see PID) of the
first member of a process group, called the process group leader.
19. PID -- Process Id
The task's unique process ID, which periodically wraps, though never restarting
at zero. In kernel terms, it is a dispatchable entity defined by a task_struct.
This value may also be used as: a process group ID (see PGRP); a session ID for
the session leader (see SID); a thread group ID for the thread group leader (see
TGID); and a TTY process group ID for the process group leader (see TPGID).
20. PPID -- Parent Process Id
The process ID (pid) of a task's parent.
21. PR -- Priority
The scheduling priority of the task. If you see `rt' in this field, it means the
task is running under real time scheduling priority.
Under linux, real time priority is somewhat misleading since traditionally the
operating itself was not preemptible. And while the 2.6 kernel can be made
mostly preemptible, it is not always so.
22. RES -- Resident Memory Size (KiB)
A subset of the virtual address space (VIRT) representing the non-swapped physi-
cal memory a task is currently using. It is also the sum of the RSan, RSfd and
RSsh fields.
It can include private anonymous pages, private pages mapped to files (including
program images and shared libraries) plus shared anonymous pages. All such mem-
ory is backed by the swap file represented separately under SWAP.
Lastly, this field may also include shared file-backed pages which, when modi-
fied, act as a dedicated swap file and thus will never impact SWAP.
See `OVERVIEW, Linux Memory Types' for additional details.
23. RSan -- Resident Anonymous Memory Size (KiB)
A subset of resident memory (RES) representing private pages not mapped to a
file.
24. RSfd -- Resident File-Backed Memory Size (KiB)
A subset of resident memory (RES) representing the implicitly shared pages sup-
porting program images and shared libraries. It also includes explicit file map-
pings, both private and shared.
25. RSlk -- Resident Locked Memory Size (KiB)
A subset of resident memory (RES) which cannot be swapped out.
26. RSsh -- Resident Shared Memory Size (KiB)
A subset of resident memory (RES) representing the explicitly shared anonymous
shm*/mmap pages.
27. RUID -- Real User Id
The real user ID.
28. RUSER -- Real User Name
The real user name.
29. S -- Process Status
The status of the task which can be one of:
D = uninterruptible sleep
I = idle
R = running
S = sleeping
T = stopped by job control signal
t = stopped by debugger during trace
Z = zombie
Tasks shown as running should be more properly thought of as ready to run --
their task_struct is simply represented on the Linux run-queue. Even without a
true SMP machine, you may see numerous tasks in this state depending on top's de-
lay interval and nice value.
30. SHR -- Shared Memory Size (KiB)
A subset of resident memory (RES) that may be used by other processes. It will
include shared anonymous pages and shared file-backed pages. It also includes
private pages mapped to files representing program images and shared libraries.
See `OVERVIEW, Linux Memory Types' for additional details.
31. SID -- Session Id
A session is a collection of process groups (see PGRP), usually established by
the login shell. A newly forked process joins the session of its creator. By
convention, this value equals the process ID (see PID) of the first member of the
session, called the session leader, which is usually the login shell.
32. SUID -- Saved User Id
The saved user ID.
33. SUPGIDS -- Supplementary Group IDs
The IDs of any supplementary group(s) established at login or inherited from a
task's parent. They are displayed in a comma delimited list.
Note: The SUPGIDS field, unlike most columns, is not fixed-width. When dis-
played, it plus any other variable width columns will be allocated all remaining
screen width (up to the maximum 512 characters). Even so, such variable width
fields could still suffer truncation. See topic 5c. SCROLLING a Window for addi-
tional information on accessing any truncated data.
34. SUPGRPS -- Supplementary Group Names
The names of any supplementary group(s) established at login or inherited from a
task's parent. They are displayed in a comma delimited list.
Note: The SUPGRPS field, unlike most columns, is not fixed-width. When dis-
played, it plus any other variable width columns will be allocated all remaining
screen width (up to the maximum 512 characters). Even so, such variable width
fields could still suffer truncation. See topic 5c. SCROLLING a Window for addi-
tional information on accessing any truncated data.
35. SUSER -- Saved User Name
The saved user name.
36. SWAP -- Swapped Size (KiB)
The formerly resident portion of a task's address space written to the swap file
when physical memory becomes over committed.
See `OVERVIEW, Linux Memory Types' for additional details.
37. TGID -- Thread Group Id
The ID of the thread group to which a task belongs. It is the PID of the thread
group leader. In kernel terms, it represents those tasks that share an
mm_struct.
38. TIME -- CPU Time
Total CPU time the task has used since it started. When Cumulative mode is On,
each process is listed with the cpu time that it and its dead children have used.
You toggle Cumulative mode with `S', which is both a command-line option and an
interactive command. See the `S' interactive command for additional information
regarding this mode.
39. TIME+ -- CPU Time, hundredths
The same as TIME, but reflecting more granularity through hundredths of a second.
40. TPGID -- Tty Process Group Id
The process group ID of the foreground process for the connected tty, or -1 if a
process is not connected to a terminal. By convention, this value equals the
process ID (see PID) of the process group leader (see PGRP).
41. TTY -- Controlling Tty
The name of the controlling terminal. This is usually the device (serial port,
pty, etc.) from which the process was started, and which it uses for input or
output. However, a task need not be associated with a terminal, in which case
you'll see `?' displayed.
42. UID -- User Id
The effective user ID of the task's owner.
43. USED -- Memory in Use (KiB)
This field represents the non-swapped physical memory a task is using (RES) plus
the swapped out portion of its address space (SWAP).
See `OVERVIEW, Linux Memory Types' for additional details.
44. USER -- User Name
The effective user name of the task's owner.
45. VIRT -- Virtual Memory Size (KiB)
The total amount of virtual memory used by the task. It includes all code, data
and shared libraries plus pages that have been swapped out and pages that have
been mapped but not used.
See `OVERVIEW, Linux Memory Types' for additional details.
46. WCHAN -- Sleeping in Function
This field will show the name of the kernel function in which the task is cur-
rently sleeping. Running tasks will display a dash (`-') in this column.
47. nDRT -- Dirty Pages Count
The number of pages that have been modified since they were last written to aux-
iliary storage. Dirty pages must be written to auxiliary storage before the cor-
responding physical memory location can be used for some other virtual page.
This field was deprecated with linux 2.6 and is always zero.
48. nMaj -- Major Page Fault Count
The number of major page faults that have occurred for a task. A page fault oc-
curs when a process attempts to read from or write to a virtual page that is not
currently present in its address space. A major page fault is when auxiliary
storage access is involved in making that page available.
49. nMin -- Minor Page Fault count
The number of minor page faults that have occurred for a task. A page fault oc-
curs when a process attempts to read from or write to a virtual page that is not
currently present in its address space. A minor page fault does not involve aux-
iliary storage access in making that page available.
50. nTH -- Number of Threads
The number of threads associated with a process.
51. nsIPC -- IPC namespace
The Inode of the namespace used to isolate interprocess communication (IPC) re-
sources such as System V IPC objects and POSIX message queues.
52. nsMNT -- MNT namespace
The Inode of the namespace used to isolate filesystem mount points thus offering
different views of the filesystem hierarchy.
53. nsNET -- NET namespace
The Inode of the namespace used to isolate resources such as network devices, IP
addresses, IP routing, port numbers, etc.
54. nsPID -- PID namespace
The Inode of the namespace used to isolate process ID numbers meaning they need
not remain unique. Thus, each such namespace could have its own `init/systemd'
(PID #1) to manage various initialization tasks and reap orphaned child pro-
cesses.
55. nsUSER -- USER namespace
The Inode of the namespace used to isolate the user and group ID numbers. Thus,
a process could have a normal unprivileged user ID outside a user namespace while
having a user ID of 0, with full root privileges, inside that namespace.
56. nsUTS -- UTS namespace
The Inode of the namespace used to isolate hostname and NIS domain name. UTS
simply means "UNIX Time-sharing System".
57. vMj -- Major Page Fault Count Delta
The number of major page faults that have occurred since the last update (see
nMaj).
58. vMn -- Minor Page Fault Count Delta
The number of minor page faults that have occurred since the last update (see
nMin).
3b. MANAGING Fields
After pressing the interactive command `f' or `F' (Fields Management) you will be
presented with a screen showing: 1) the `current' window name; 2) the designated sort
field; 3) all fields in their current order along with descriptions. Entries marked
with an asterisk are the currently displayed fields, screen width permitting.
• As the on screen instructions indicate, you navigate among the fields with the
Up and Down arrow keys. The PgUp, PgDn, Home and End keys can also be used to
quickly reach the first or last available field.
• The Right arrow key selects a field for repositioning and the Left arrow key
or the <Enter> key commits that field's placement.
• The `d' key or the <Space> bar toggles a field's display status, and thus the
presence or absence of the asterisk.
• The `s' key designates a field as the sort field. See topic 4c. TASK AREA
Commands, SORTING for additional information regarding your selection of a
sort field.
• The `a' and `w' keys can be used to cycle through all available windows and
the `q' or <Esc> keys exit Fields Management.
The Fields Management screen can also be used to change the `current' window/field
group in either full-screen mode or alternate-display mode. Whatever was targeted
when `q' or <Esc> was pressed will be made current as you return to the top display.
See topic 5. ALTERNATE-DISPLAY Provisions and the `g' interactive command for insight
into `current' windows and field groups.
Note: Any window that has been scrolled horizontally will be reset if any field
changes are made via the Fields Management screen. Any vertical scrolled position,
however, will not be affected. See topic 5c. SCROLLING a Window for additional in-
formation regarding vertical and horizontal scrolling.
4. INTERACTIVE Commands
Listed below is a brief index of commands within categories. Some commands appear
more than once -- their meaning or scope may vary depending on the context in which
they are issued.
4a. Global-Commands
<Ent/Sp> ?, =, 0,
A, B, d, E, e, g, h, H, I, k, q, r, s, W, X, Y, Z
4b. Summary-Area-Commands
C, l, t, m, 1, 2, 3
4c. Task-Area-Commands
Appearance: b, J, j, x, y, z
Content: c, f, F, o, O, S, u, U, V
Size: #, i, n
Sorting: <, >, f, F, R
4d. Color-Mapping
<Ret>, a, B, b, H, M, q, S, T, w, z, 0 - 7
5b. Commands-for-Windows
-, _, =, +, A, a, g, G, w
5c. Scrolling-a-Window
C, Up, Dn, Left, Right, PgUp, PgDn, Home, End
5d. Searching-in-a-Window
L, &
4a. GLOBAL Commands
The global interactive commands are always available in both full-screen mode and al-
ternate-display mode. However, some of these interactive commands are not available
when running in Secure mode.
If you wish to know in advance whether or not your top has been secured, simply ask
for help and view the system summary on the second line.
<Enter> or <Space> :Refresh-Display
These commands awaken top and following receipt of any input the entire dis-
play will be repainted. They also force an update of any hotplugged cpu or
physical memory changes.
Use either of these keys if you have a large delay interval and wish to see
current status,
? | h :Help
There are two help levels available. The first will provide a reminder of all
the basic interactive commands. If top is secured, that screen will be abbre-
viated.
Typing `h' or `?' on that help screen will take you to help for those interac-
tive commands applicable to alternate-display mode.
= :Exit-Task-Limits
Removes restrictions on which tasks are shown. This command will reverse any
`i' (idle tasks) and `n' (max tasks) commands that might be active. It also
provides for an exit from PID monitoring, User filtering, Other filtering and
Locate processing. See the `-p' command-line option for a discussion of PID
monitoring, the `U' or `u' interactive commands for User filtering the `O' or
`o' interactive commands for Other filtering and `L' or `&' interactive com-
mands for Locate processing.
Additionally, any window that has been scrolled will be reset with this com-
mand. See topic 5c. SCROLLING a Window for additional information regarding
vertical and horizontal scrolling.
When operating in alternate-display mode this command has a broader meaning.
0 :Zero-Suppress toggle
This command determines whether zeros are shown or suppressed for many of the
fields in a task window. Fields like UID, GID, NI, PR or P are not affected
by this toggle.
A :Alternate-Display-Mode toggle
This command will switch between full-screen mode and alternate-display mode.
See topic 5. ALTERNATE-DISPLAY Provisions and the `g' interactive command for
insight into `current' windows and field groups.
B :Bold-Disable/Enable toggle
This command will influence use of the bold terminfo capability and alters
both the summary area and task area for the `current' window. While it is in-
tended primarily for use with dumb terminals, it can be applied anytime.
Note: When this toggle is On and top is operating in monochrome mode, the en-
tire display will appear as normal text. Thus, unless the `x' and/or `y' tog-
gles are using reverse for emphasis, there will be no visual confirmation that
they are even on.
* d | s :Change-Delay-Time-interval
You will be prompted to enter the delay time, in seconds, between display up-
dates.
Fractional seconds are honored, but a negative number is not allowed. Enter-
ing 0 causes (nearly) continuous updates, with an unsatisfactory display as
the system and tty driver try to keep up with top's demands. The delay value
is inversely proportional to system loading, so set it with care.
If at any time you wish to know the current delay time, simply ask for help
and view the system summary on the second line.
E :Extend-Memory-Scale in Summary Area
With this command you can cycle through the available summary area memory
scaling which ranges from KiB (kibibytes or 1,024 bytes) through EiB
(exbibytes or 1,152,921,504,606,846,976 bytes).
If you see a `+' between a displayed number and the following label, it means
that top was forced to truncate some portion of that number. By raising the
scaling factor, such truncation can be avoided.
e :Extend-Memory-Scale in Task Windows
With this command you can cycle through the available task window memory scal-
ing which ranges from KiB (kibibytes or 1,024 bytes) through PiB (pebibytes or
1,125,899,906,842,624 bytes).
While top will try to honor the selected target range, additional scaling
might still be necessary in order to accommodate current values. If you wish
to see a more homogeneous result in the memory columns, raising the scaling
range will usually accomplish that goal. Raising it too high, however, is
likely to produce an all zero result which cannot be suppressed with the `0'
interactive command.
g :Choose-Another-Window/Field-Group
You will be prompted to enter a number between 1 and 4 designating the field
group which should be made the `current' window. You will soon grow comfort-
able with these 4 windows, especially after experimenting with alternate-dis-
play mode.
H :Threads-mode toggle
When this toggle is On, individual threads will be displayed for all processes
in all visible task windows. Otherwise, top displays a summation of all
threads in each process.
I :Irix/Solaris-Mode toggle
When operating in Solaris mode (`I' toggled Off), a task's cpu usage will be
divided by the total number of CPUs. After issuing this command, you'll be
told the new state of this toggle.
* k :Kill-a-task
You will be prompted for a PID and then the signal to send.
Entering no PID or a negative number will be interpreted as the default shown
in the prompt (the first task displayed). A PID value of zero means the top
program itself.
The default signal, as reflected in the prompt, is SIGTERM. However, you can
send any signal, via number or name.
If you wish to abort the kill process, do one of the following depending on
your progress:
1) at the pid prompt, type an invalid number
2) at the signal prompt, type 0 (or any invalid signal)
3) at any prompt, type <Esc>
q :Quit
* r :Renice-a-Task
You will be prompted for a PID and then the value to nice it to.
Entering no PID or a negative number will be interpreted as the default shown
in the prompt (the first task displayed). A PID value of zero means the top
program itself.
A positive nice value will cause a process to lose priority. Conversely, a
negative nice value will cause a process to be viewed more favorably by the
kernel. As a general rule, ordinary users can only increase the nice value
and are prevented from lowering it.
If you wish to abort the renice process, do one of the following depending on
your progress:
1) at the pid prompt, type an invalid number
2) at the nice prompt, type <Enter> with no input
3) at any prompt, type <Esc>
W :Write-the-Configuration-File
This will save all of your options and toggles plus the current display mode
and delay time. By issuing this command just before quitting top, you will be
able restart later in exactly that same state.
X :Extra-Fixed-Width
Some fields are fixed width and not scalable. As such, they are subject to
truncation which would be indicated by a `+' in the last position.
This interactive command can be used to alter the widths of the following
fields:
field default field default field default
GID 5 GROUP 8 WCHAN 10
RUID 5 LXC 8 nsIPC 10
SUID 5 RUSER 8 nsMNT 10
UID 5 SUSER 8 nsNET 10
TTY 8 nsPID 10
USER 8 nsUSER 10
nsUTS 10
You will be prompted for the amount to be added to the default widths shown
above. Entering zero forces a return to those defaults.
If you enter a negative number, top will automatically increase the column
size as needed until there is no more truncated data. You can accelerate this
process by reducing the delay interval or holding down the <Space> bar.
Note: Whether explicitly or automatically increased, the widths for these
fields are never decreased by top. To narrow them you must specify a smaller
number or restore the defaults.
Y :Inspect-Other-Output
After issuing the `Y' interactive command, you will be prompted for a target
PID. Typing a value or accepting the default results in a separate screen.
That screen can be used to view a variety of files or piped command output
while the normal top iterative display is paused.
Note: This interactive command is only fully realized when supporting entries
have been manually added to the end of the top configuration file. For de-
tails on creating those entries, see topic 6b. ADDING INSPECT Entries.
Most of the keys used to navigate the Inspect feature are reflected in its
header prologue. There are, however, additional keys available once you have
selected a particular file or command. They are familiar to anyone who has
used the pager `less' and are summarized here for future reference.
key function
= alternate status-line, file or pipeline
/ find, equivalent to `L' locate
n find next, equivalent to `&' locate next
<Space> scroll down, equivalent to <PgDn>
b scroll up, equivalent to <PgUp>
g first line, equivalent to <Home>
G last line, equivalent to <End>
Z :Change-Color-Mapping
This key will take you to a separate screen where you can change the colors
for the `current' window, or for all windows. For details regarding this in-
teractive command see topic 4d. COLOR Mapping.
* The commands shown with an asterisk (`*') are not available in Secure mode, nor
will they be shown on the level-1 help screen.
4b. SUMMARY AREA Commands
The summary area interactive commands are always available in both full-screen mode
and alternate-display mode. They affect the beginning lines of your display and will
determine the position of messages and prompts.
These commands always impact just the `current' window/field group. See topic 5. AL-
TERNATE-DISPLAY Provisions and the `g' interactive command for insight into `current'
windows and field groups.
C :Show-scroll-coordinates toggle
Toggle an informational message which is displayed whenever the message line
is not otherwise being used. For additional information see topic 5c.
SCROLLING a Window.
l :Load-Average/Uptime toggle
This is also the line containing the program name (possibly an alias) when op-
erating in full-screen mode or the `current' window name when operating in al-
ternate-display mode.
t :Task/Cpu-States toggle
This command affects from 2 to many summary area lines, depending on the state
of the `1', `2' or `3' command toggles and whether or not top is running under
true SMP.
This portion of the summary area is also influenced by the `H' interactive
command toggle, as reflected in the total label which shows either Tasks or
Threads.
This command serves as a 4-way toggle, cycling through these modes:
1. detailed percentages by category
2. abbreviated user/system and total % + bar graph
3. abbreviated user/system and total % + block graph
4. turn off task and cpu states display
When operating in either of the graphic modes, the display becomes much more
meaningful when individual CPUs or NUMA nodes are also displayed. See the the
`1', `2' and `3' commands below for additional information.
m :Memory/Swap-Usage toggle
This command affects the two summary area lines dealing with physical and vir-
tual memory.
This command serves as a 4-way toggle, cycling through these modes:
1. detailed percentages by memory type
2. abbreviated % used/total available + bar graph
3. abbreviated % used/total available + block graph
4. turn off memory display
1 :Single/Separate-Cpu-States toggle
This command affects how the `t' command's Cpu States portion is shown. Al-
though this toggle exists primarily to serve massively-parallel SMP machines,
it is not restricted to solely SMP environments.
When you see `%Cpu(s):' in the summary area, the `1' toggle is On and all cpu
information is gathered in a single line. Otherwise, each cpu is displayed
separately as: `%Cpu0, %Cpu1, ...' up to available screen height.
2 :NUMA-Nodes/Cpu-Summary toggle
This command toggles between the `1' command cpu summary display (only) or a
summary display plus the cpu usage statistics for each NUMA Node. It is only
available if a system has the requisite NUMA support.
3 :Expand-NUMA-Node
You will be invited to enter a number representing a NUMA Node. Thereafter, a
node summary plus the statistics for each cpu in that node will be shown until
either the `1' or `2' command toggle is pressed. This interactive command is
only available if a system has the requisite NUMA support.
Note: If the entire summary area has been toggled Off for any window, you would be
left with just the message line. In that way, you will have maximized available task
rows but (temporarily) sacrificed the program name in full-screen mode or the `cur-
rent' window name when in alternate-display mode.
4c. TASK AREA Commands
The task area interactive commands are always available in full-screen mode.
The task area interactive commands are never available in alternate-display mode if
the `current' window's task display has been toggled Off (see topic 5. ALTERNATE-DIS-
PLAY Provisions).
APPEARANCE of task window
J :Justify-Numeric-Columns toggle
Alternates between right-justified (the default) and left-justified numeric
data. If the numeric data completely fills the available column, this command
toggle may impact the column header only.
j :Justify-Character-Columns toggle
Alternates between left-justified (the default) and right-justified character
data. If the character data completely fills the available column, this com-
mand toggle may impact the column header only.
The following commands will also be influenced by the state of the global `B' (bold
enable) toggle.
b :Bold/Reverse toggle
This command will impact how the `x' and `y' toggles are displayed. It may
also impact the summary area when a bar graph has been selected for cpu states
or memory usage via the `t' or `m' toggles.
x :Column-Highlight toggle
Changes highlighting for the current sort field. If you forget which field is
being sorted this command can serve as a quick visual reminder, providing the
sort field is being displayed. The sort field might not be visible because:
1) there is insufficient Screen Width
2) the `f' interactive command turned it Off
Note: Whenever Searching and/or Other Filtering is active in a window, column
highlighting is temporarily disabled. See the notes at the end of topics 5d.
SEARCHING and 5e. FILTERING for an explanation why.
y :Row-Highlight toggle
Changes highlighting for "running" tasks. For additional insight into this
task state, see topic 3a. DESCRIPTIONS of Fields, the `S' field (Process Sta-
tus).
Use of this provision provides important insight into your system's health.
The only costs will be a few additional tty escape sequences.
z :Color/Monochrome toggle
Switches the `current' window between your last used color scheme and the
older form of black-on-white or white-on-black. This command will alter both
the summary area and task area but does not affect the state of the `x', `y'
or `b' toggles.
CONTENT of task window
c :Command-Line/Program-Name toggle
This command will be honored whether or not the COMMAND column is currently
visible. Later, should that field come into view, the change you applied will
be seen.
f | F :Fields-Management
These keys display a separate screen where you can change which fields are
displayed, their order and also designate the sort field. For additional in-
formation on these interactive commands see topic 3b. MANAGING Fields.
o | O :Other-Filtering
You will be prompted for the selection criteria which then determines which
tasks will be shown in the `current' window. Your criteria can be made case
sensitive or case can be ignored. And you determine if top should include or
exclude matching tasks.
See topic 5e. FILTERING in a window for details on these and additional re-
lated interactive commands.
S :Cumulative-Time-Mode toggle
When Cumulative mode is On, each process is listed with the cpu time that it
and its dead children have used.
When Off, programs that fork into many separate tasks will appear less demand-
ing. For programs like `init' or a shell this is appropriate but for others,
like compilers, perhaps not. Experiment with two task windows sharing the
same sort field but with different `S' states and see which representation you
prefer.
After issuing this command, you'll be informed of the new state of this tog-
gle. If you wish to know in advance whether or not Cumulative mode is in ef-
fect, simply ask for help and view the window summary on the second line.
u | U :Show-Specific-User-Only
You will be prompted for the uid or name of the user to display. The -u op-
tion matches on effective user whereas the -U option matches on any user
(real, effective, saved, or filesystem).
Thereafter, in that task window only matching users will be shown, or possibly
no processes will be shown. Prepending an exclamation point (`!') to the user
id or name instructs top to display only processes with users not matching the
one provided.
Different task windows can be used to filter different users. Later, if you
wish to monitor all users again in the `current' window, re-issue this command
but just press <Enter> at the prompt.
V :Forest-View-Mode toggle
In this mode, processes are reordered according to their parents and the lay-
out of the COMMAND column resembles that of a tree. In forest view mode it is
still possible to toggle between program name and command line (see the `c'
interactive command) or between processes and threads (see the `H' interactive
command).
Note: Typing any key affecting the sort order will exit forest view mode in
the `current' window. See topic 4c. TASK AREA Commands, SORTING for informa-
tion on those keys.
SIZE of task window
i :Idle-Process toggle
Displays all tasks or just active tasks. When this toggle is Off, tasks that
have not used any CPU since the last update will not be displayed. However,
due to the granularity of the %CPU and TIME+ fields, some processes may still
be displayed that appear to have used no CPU.
If this command is applied to the last task display when in alternate-display
mode, then it will not affect the window's size, as all prior task displays
will have already been painted.
n | # :Set-Maximum-Tasks
You will be prompted to enter the number of tasks to display. The lessor of
your number and available screen rows will be used.
When used in alternate-display mode, this is the command that gives you pre-
cise control over the size of each currently visible task display, except for
the very last. It will not affect the last window's size, as all prior task
displays will have already been painted.
Note: If you wish to increase the size of the last visible task display when
in alternate-display mode, simply decrease the size of the task display(s)
above it.
SORTING of task window
For compatibility, this top supports most of the former top sort keys. Since this
is primarily a service to former top users, these commands do not appear on any
help screen.
command sorted-field supported
A start time (non-display) No
M %MEM Yes
N PID Yes
P %CPU Yes
T TIME+ Yes
Before using any of the following sort provisions, top suggests that you temporar-
ily turn on column highlighting using the `x' interactive command. That will help
ensure that the actual sort environment matches your intent.
The following interactive commands will only be honored when the current sort
field is visible. The sort field might not be visible because:
1) there is insufficient Screen Width
2) the `f' interactive command turned it Off
< :Move-Sort-Field-Left
Moves the sort column to the left unless the current sort field is the
first field being displayed.
> :Move-Sort-Field-Right
Moves the sort column to the right unless the current sort field is the
last field being displayed.
The following interactive commands will always be honored whether or not the cur-
rent sort field is visible.
f | F :Fields-Management
These keys display a separate screen where you can change which field is
used as the sort column, among other functions. This can be a convenient
way to simply verify the current sort field, when running top with column
highlighting turned Off.
R :Reverse/Normal-Sort-Field toggle
Using this interactive command you can alternate between high-to-low and
low-to-high sorts.
Note: Field sorting uses internal values, not those in column display. Thus, the
TTY and WCHAN fields will violate strict ASCII collating sequence.
4d. COLOR Mapping
When you issue the `Z' interactive command, you will be presented with a separate
screen. That screen can be used to change the colors in just the `current' window or
in all four windows before returning to the top display.
The following interactive commands are available.
4 upper case letters to select a target
8 numbers to select a color
normal toggles available
B :bold disable/enable
b :running tasks "bold"/reverse
z :color/mono
other commands available
a/w :apply, then go to next/prior
<Enter> :apply and exit
q :abandon current changes and exit
If you use `a' or `w' to cycle the targeted window, you will have applied the color
scheme that was displayed when you left that window. You can, of course, easily re-
turn to any window and reapply different colors or turn colors Off completely with
the `z' toggle.
The Color Mapping screen can also be used to change the `current' window/field group
in either full-screen mode or alternate-display mode. Whatever was targeted when `q'
or <Enter> was pressed will be made current as you return to the top display.
5. ALTERNATE-DISPLAY Provisions
5a. WINDOWS Overview
Field Groups/Windows:
In full-screen mode there is a single window represented by the entire screen.
That single window can still be changed to display 1 of 4 different field groups
(see the `g' interactive command, repeated below). Each of the 4 field groups has
a unique separately configurable summary area and its own configurable task area.
In alternate-display mode, those 4 underlying field groups can now be made visible
simultaneously, or can be turned Off individually at your command.
The summary area will always exist, even if it's only the message line. At any
given time only one summary area can be displayed. However, depending on your
commands, there could be from zero to four separate task displays currently show-
ing on the screen.
Current Window:
The `current' window is the window associated with the summary area and the window
to which task related commands are always directed. Since in alternate-display
mode you can toggle the task display Off, some commands might be restricted for
the `current' window.
A further complication arises when you have toggled the first summary area line
Off. With the loss of the window name (the `l' toggled line), you'll not easily
know what window is the `current' window.
5b. COMMANDS for Windows
- | _ :Show/Hide-Window(s) toggles
The `-' key turns the `current' window's task display On and Off. When On,
that task area will show a minimum of the columns header you've established
with the `f' interactive command. It will also reflect any other task area
options/toggles you've applied yielding zero or more tasks.
The `_' key does the same for all task displays. In other words, it switches
between the currently visible task display(s) and any task display(s) you had
toggled Off. If all 4 task displays are currently visible, this interactive
command will leave the summary area as the only display element.
* = | + :Equalize-(reinitialize)-Window(s)
The `=' key forces the `current' window's task display to be visible. It also
reverses any `i' (idle tasks), `n' (max tasks), `u/U' (user filter), `o/O'
(other filter) and 'L' (locate) commands that might be active. Also, if the
window had been scrolled, it will be reset with this command. See topic 5c.
SCROLLING a Window for additional information regarding vertical and horizon-
tal scrolling.
The `+' key does the same for all windows. The four task displays will reap-
pear, evenly balanced. They will also have retained any customizations you
had previously applied, except for the `i' (idle tasks), `n' (max tasks),
`u/U' (user filter), `o/O' (other filter), `L' (locate) and scrolling interac-
tive commands.
* A :Alternate-Display-Mode toggle
This command will switch between full-screen mode and alternate-display mode.
The first time you issue this command, all four task displays will be shown.
Thereafter when you switch modes, you will see only the task display(s) you've
chosen to make visible.
* a | w :Next-Window-Forward/Backward
This will change the `current' window, which in turn changes the window to
which commands are directed. These keys act in a circular fashion so you can
reach any desired window using either key.
Assuming the window name is visible (you have not toggled `l' Off), whenever
the `current' window name loses its emphasis/color, that's a reminder the task
display is Off and many commands will be restricted.
* g :Choose-Another-Window/Field-Group
You will be prompted to enter a number between 1 and 4 designating the field
group which should be made the `current' window.
In full-screen mode, this command is necessary to alter the `current' window.
In alternate-display mode, it is simply a less convenient alternative to the
`a' and `w' commands.
G :Change-Window/Field-Group-Name
You will be prompted for a new name to be applied to the `current' window. It
does not require that the window name be visible (the `l' toggle to be On).
* The interactive commands shown with an asterisk (`*') have use beyond alter-
nate-display mode.
=, A, g are always available
a, w act the same with color mapping
and fields management
5c. SCROLLING a Window
Typically a task window is a partial view into a systems's total tasks/threads which
shows only some of the available fields/columns. With these scrolling keys, you can
move that view vertically or horizontally to reveal any desired task or column.
Up,PgUp :Scroll-Tasks
Move the view up toward the first task row, until the first task is displayed at
the top of the `current' window. The Up arrow key moves a single line while PgUp
scrolls the entire window.
Down,PgDn :Scroll-Tasks
Move the view down toward the last task row, until the last task is the only task
displayed at the top of the `current' window. The Down arrow key moves a single
line while PgDn scrolls the entire window.
Left,Right :Scroll-Columns
Move the view of displayable fields horizontally one column at a time.
Note: As a reminder, some fields/columns are not fixed-width but allocated all
remaining screen width when visible. When scrolling right or left, that feature
may produce some unexpected results initially.
Additionally, there are special provisions for any variable width field when po-
sitioned as the last displayed field. Once that field is reached via the right
arrow key, and is thus the only column shown, you can continue scrolling horizon-
tally within such a field. See the `C' interactive command below for additional
information.
Home :Jump-to-Home-Position
Reposition the display to the un-scrolled coordinates.
End :Jump-to-End-Position
Reposition the display so that the rightmost column reflects the last displayable
field and the bottom task row represents the last task.
Note: From this position it is still possible to scroll down and right using the
arrow keys. This is true until a single column and a single task is left as the
only display element.
C :Show-scroll-coordinates toggle
Toggle an informational message which is displayed whenever the message line is
not otherwise being used. That message will take one of two forms depending on
whether or not a variable width column has also been scrolled.
scroll coordinates: y = n/n (tasks), x = n/n (fields)
scroll coordinates: y = n/n (tasks), x = n/n (fields) + nn
The coordinates shown as n/n are relative to the upper left corner of the `cur-
rent' window. The additional `+ nn' represents the displacement into a variable
width column when it has been scrolled horizontally. Such displacement occurs in
normal 8 character tab stop amounts via the right and left arrow keys.
y = n/n (tasks)
The first n represents the topmost visible task and is controlled by
scrolling keys. The second n is updated automatically to reflect total
tasks.
x = n/n (fields)
The first n represents the leftmost displayed column and is controlled by
scrolling keys. The second n is the total number of displayable fields and
is established with the `f' interactive command.
The above interactive commands are always available in full-screen mode but never
available in alternate-display mode if the `current' window's task display has been
toggled Off.
Note: When any form of filtering is active, you can expect some slight aberrations
when scrolling since not all tasks will be visible. This is particularly apparent
when using the Up/Down arrow keys.
5d. SEARCHING in a Window
You can use these interactive commands to locate a task row containing a particular
value.
L :Locate-a-string
You will be prompted for the case-sensitive string to locate starting from the
current window coordinates. There are no restrictions on search string content.
Searches are not limited to values from a single field or column. All of the
values displayed in a task row are allowed in a search string. You may include
spaces, numbers, symbols and even forest view artwork.
Keying <Enter> with no input will effectively disable the `&' key until a new
search string is entered.
& :Locate-next
Assuming a search string has been established, top will attempt to locate the
next occurrence.
When a match is found, the current window is repositioned vertically so the task row
containing that string is first. The scroll coordinates message can provide confir-
mation of such vertical repositioning (see the `C' interactive command). Horizontal
scrolling, however, is never altered via searching.
The availability of a matching string will be influenced by the following factors.
a. Which fields are displayable from the total available,
see topic 3b. MANAGING Fields.
b. Scrolling a window vertically and/or horizontally,
see topic 5c. SCROLLING a Window.
c. The state of the command/command-line toggle,
see the `c' interactive command.
d. The stability of the chosen sort column,
for example PID is good but %CPU bad.
If a search fails, restoring the `current' window home (unscrolled) position,
scrolling horizontally, displaying command-lines or choosing a more stable sort field
could yet produce a successful `&' search.
The above interactive commands are always available in full-screen mode but never
available in alternate-display mode if the `current' window's task display has been
toggled Off.
Note: Whenever a Search is active in a window, top will turn column highlighting Off
to prevent false matches on internal non-display escape sequences. Such highlighting
will be restored when a window's search string is empty. See the `x' interactive
command for additional information on sort column highlighting.
5e. FILTERING in a Window
You can use this Other Filter feature to establish selection criteria which will then
determine which tasks are shown in the `current' window.
Establishing a filter requires: 1) a field name; 2) an operator; and 3) a selection
value, as a minimum. This is the most complex of top's user input requirements so,
when you make a mistake, command recall will be your friend. Remember the Up/Down
arrow keys or their aliases when prompted for input.
Filter Basics
1. field names are case sensitive and spelled as in the header
2. selection values need not comprise the full displayed field
3. a selection is either case insensitive or sensitive to case
4. the default is inclusion, prepending `!' denotes exclusions
5. multiple selection criteria can be applied to a task window
6. inclusion and exclusion criteria can be used simultaneously
7. the 1 equality and 2 relational filters can be freely mixed
8. separate unique filters are maintained for each task window
If a field is not turned on or is not currently in view, then your selection cri-
teria will not affect the display. Later, should a filtered field become visible,
the selection criteria will then be applied.
Keyboard Summary
o :Other-Filter (lower case)
You will be prompted to establish a filter that ignores case when matching.
O :Other-Filter (upper case)
You will be prompted to establish a case sensitive filter.
^O :Show-Active-Filters (Ctrl key + `o')
This can serve as a reminder of which filters are active in the `current' win-
dow. A summary will be shown on the message line until you press the <Enter>
key.
= :Reset-Filtering in current window
This clears all of your selection criteria in the `current' window. It also
has additional impact so please see topic 4a. GLOBAL Commands.
+ :Reset-Filtering in all windows
This clears the selection criteria in all windows, assuming you are in alter-
nate-display mode. As with the `=' interactive command, it too has additional
consequences so you might wish to see topic 5b. COMMANDS for Windows.
Input Requirements
When prompted for selection criteria, the data you provide must take one of two
forms. There are 3 required pieces of information, with a 4th as optional. These
examples use spaces for clarity but your input generally would not.
#1 #2 #3 ( required )
Field-Name ? include-if-value
! Field-Name ? exclude-if-value
#4 ( optional )
Items #1, #3 and #4 should be self-explanatory. Item #2 represents both a re-
quired delimiter and the operator which must be one of either equality (`=') or
relation (`<' or `>').
The `=' equality operator requires only a partial match and that can reduce your
`if-value' input requirements. The `>' or `<' relational operators always employ
string comparisons, even with numeric fields. They are designed to work with a
field's default justification and with homogeneous data. When some field's nu-
meric amounts have been subjected to scaling while others have not, that data is
no longer homogeneous.
If you establish a relational filter and you have changed the default Numeric or
Character justification, that filter is likely to fail. When a relational filter
is applied to a memory field and you have not changed the scaling, it may produce
misleading results. This happens, for example, because `100.0m' (MiB) would ap-
pear greater than `1.000g' (GiB) when compared as strings.
If your filtered results appear suspect, simply altering justification or scaling
may yet achieve the desired objective. See the `j', `J' and `e' interactive com-
mands for additional information.
Potential Problems
These GROUP filters could produce the exact same results or the second one might
not display anything at all, just a blank task window.
GROUP=root ( only the same results when )
GROUP=ROOT ( invoked via lower case `o' )
Either of these RES filters might yield inconsistent and/or misleading results,
depending on the current memory scaling factor. Or both filters could produce the
exact same results.
RES>9999 ( only the same results when )
!RES<10000 ( memory scaling is at `KiB' )
This nMin filter illustrates a problem unique to scalable fields. This particular
field can display a maximum of 4 digits, beyond which values are automatically
scaled to KiB or above. So while amounts greater than 9999 exist, they will ap-
pear as 2.6m, 197k, etc.
nMin>9999 ( always a blank task window )
Potential Solutions
These examples illustrate how Other Filtering can be creatively applied to achieve
almost any desired result. Single quotes are sometimes shown to delimit the spa-
ces which are part of a filter or to represent a request for status (^O) accu-
rately. But if you used them with if-values in real life, no matches would be
found.
Assuming field nTH is displayed, the first filter will result in only multi-
threaded processes being shown. It also reminds us that a trailing space is part
of every displayed field. The second filter achieves the exact same results with
less typing.
!nTH=` 1 ' ( ' for clarity only )
nTH>1 ( same with less i/p )
With Forest View mode active and the COMMAND column in view, this filter effec-
tively collapses child processes so that just 3 levels are shown.
!COMMAND=` `- ' ( ' for clarity only )
The final two filters appear as in response to the status request key (^O). In
reality, each filter would have required separate input. The PR example shows the
two concurrent filters necessary to display tasks with priorities of 20 or more,
since some might be negative. Then by exploiting trailing spaces, the nMin series
of filters could achieve the failed `9999' objective discussed above.
`PR>20' + `!PR=-' ( 2 for right result )
`!nMin=0 ' + `!nMin=1 ' + `!nMin=2 ' + `!nMin=3 ' ...
Note: Whenever Other Filtering is active in a window, top will turn column highlight-
ing Off to prevent false matches on internal non-display escape sequences. Such
highlighting will be restored when a window is no longer subject to filtering. See
the `x' interactive command for additional information on sort column highlighting.
6. FILES
6a. PERSONAL Configuration File
This file is created or updated via the 'W' interactive command.
The legacy version is written as `$HOME/.your-name-4-top' + `rc' with a leading pe-
riod.
A newly created configuration file is written as procps/your-name-4-top' + `rc' with-
out a leading period. The procps directory will be subordinate to either $XDG_CON-
FIG_HOME when set as an absolute path or the $HOME/.config directory.
While not intended to be edited manually, here is the general layout:
global # line 1: the program name/alias notation
" # line 2: id,altscr,irixps,delay,curwin
per ea # line a: winname,fieldscur
window # line b: winflags,sortindx,maxtasks,graph modes
" # line c: summclr,msgsclr,headclr,taskclr
global # line 15: additional miscellaneous settings
" # any remaining lines are devoted to the
" # generalized inspect provisions
" # discussed below
If a valid absolute path to the rcfile cannot be established, customizations made to
a running e will be impossible to preserve.
6b. ADDING INSPECT Entries
To exploit the `Y' interactive command, you must add entries at the end of the top
personal configuration file. Such entries simply reflect a file to be read or com-
mand/pipeline to be executed whose results will then be displayed in a separate
scrollable, searchable window.
If you don't know the location or name of your top rcfile, use the `W' interactive
command to rewrite it and note those details.
Inspect entries can be added with a redirected echo or by editing the configuration
file. Redirecting an echo risks overwriting the rcfile should it replace (>) rather
than append (>>) to that file. Conversely, when using an editor care must be taken
not to corrupt existing lines, some of which will contain unprintable data or unusual
characters.
Those Inspect entries beginning with a `#' character are ignored, regardless of con-
tent. Otherwise they consist of the following 3 elements, each of which must be sep-
arated by a tab character (thus 2 `\t' total):
.type: literal `file' or `pipe'
.name: selection shown on the Inspect screen
.fmts: string representing a path or command
The two types of Inspect entries are not interchangeable. Those designated `file'
will be accessed using fopen and must reference a single file in the `.fmts' element.
Entries specifying `pipe' will employ popen, their `.fmts' element could contain many
pipelined commands and, none can be interactive.
If the file or pipeline represented in your `.fmts' deals with the specific PID input
or accepted when prompted, then the format string must also contain the `%d' speci-
fier, as these examples illustrate.
.fmts= /proc/%d/numa_maps
.fmts= lsof -P -p %d
For `pipe' type entries only, you may also wish to redirect stderr to stdout for a
more comprehensive result. Thus the format string becomes:
.fmts= pmap -x %d 2>&1
Here are examples of both types of Inspect entries as they might appear in the rc-
file. The first entry will be ignored due to the initial `#' character. For clar-
ity, the pseudo tab depictions (^I) are surrounded by an extra space but the actual
tabs would not be.
# pipe ^I Sockets ^I lsof -n -P -i 2>&1
pipe ^I Open Files ^I lsof -P -p %d 2>&1
file ^I NUMA Info ^I /proc/%d/numa_maps
pipe ^I Log ^I tail -n100 /var/log/syslog | sort -Mr
Except for the commented entry above, these next examples show what could be echoed
to achieve similar results, assuming the rcfile name was `.toprc'. However, due to
the embedded tab characters, each of these lines should be preceded by `/bin/echo
-e', not just a simple an `echo', to enable backslash interpretation regardless of
which shell you use.
"pipe\tOpen Files\tlsof -P -p %d 2>&1" >> ~/.toprc
"file\tNUMA Info\t/proc/%d/numa_maps" >> ~/.toprc
"pipe\tLog\ttail -n200 /var/log/syslog | sort -Mr" >> ~/.toprc
Caution: If any inspect entry you create produces output with unprintable characters
they will be displayed in either the ^C notation or hexadecimal <FF> form, depending
on their value. This applies to tab characters as well, which will show as `^I'. If
you want a truer representation, any embedded tabs should be expanded.
# next would have contained `\t' ...
# file ^I <your_name> ^I /proc/%d/status
# but this will eliminate embedded `\t' ...
pipe ^I <your_name> ^I cat /proc/%d/status | expand -
The above example takes what could have been a `file' entry but employs a `pipe' in-
stead so as to expand the embedded tabs.
Note: While `pipe' type entries have been discussed in terms of pipelines and com-
mands, there is nothing to prevent you from including shell scripts as well. Per-
haps even newly created scripts designed specifically for the `Y' interactive com-
mand.
Lastly, as the number of your Inspect entries grows over time, the `Options:' row
will be truncated when screen width is exceeded. That does not affect operation
other than to make some selections invisible.
However, if some choices are lost to truncation but you want to see more options,
there is an easy solution hinted at below.
Inspection Pause at pid ...
Use: left/right then <Enter> ...
Options: help 1 2 3 4 5 6 7 8 9 10 11 ...
The entries in the top rcfile would have a number for the `.name' element and the
`help' entry would identify a shell script you've written explaining what those num-
bered selections actually mean. In that way, many more choices can be made visible.
6c. SYSTEM Configuration File
This configuration file represents defaults for users who have not saved their own
configuration file. The format mirrors exactly the personal configuration file and
can also include `inspect' entries as explained above.
Creating it is a simple process.
1. Configure top appropriately for your installation and preserve that configuration
with the `W' interactive command.
2. Add and test any desired `inspect' entries.
3. Copy that configuration file to the /etc/ directory as `topdefaultrc'.
6d. SYSTEM Restrictions File
The presence of this file will influence which version of the help screen is shown to
an ordinary user.
More importantly, it will limit what ordinary users are allowed to do when top is
running. They will not be able to issue the following commands.
k Kill a task
r Renice a task
d or s Change delay/sleep interval
This configuration file is not created by top. Rather, it is created manually and
placed it in the /etc/ directory as `toprc'.
It should have exactly two lines, as shown in this example:
s # line 1: secure mode switch
5.0 # line 2: delay interval in seconds
7. STUPID TRICKS Sampler
Many of these tricks work best when you give top a scheduling boost. So plan on
starting him with a nice value of -10, assuming you've got the authority.
7a. Kernel Magic
For these stupid tricks, top needs full-screen mode.
• The user interface, through prompts and help, intentionally implies that the delay
interval is limited to tenths of a second. However, you're free to set any de-
sired delay. If you want to see Linux at his scheduling best, try a delay of .09
seconds or less.
For this experiment, under x-windows open an xterm and maximize it. Then do the
following:
. provide a scheduling boost and tiny delay via:
nice -n -10 top -d.09
. keep sorted column highlighting Off so as to
minimize path length
. turn On reverse row highlighting for emphasis
. try various sort columns (TIME/MEM work well),
and normal or reverse sorts to bring the most
active processes into view
What you'll see is a very busy Linux doing what he's always done for you, but
there was no program available to illustrate this.
• Under an xterm using `white-on-black' colors, on top's Color Mapping screen set
the task color to black and be sure that task highlighting is set to bold, not re-
verse. Then set the delay interval to around .3 seconds.
After bringing the most active processes into view, what you'll see are the
ghostly images of just the currently running tasks.
• Delete the existing rcfile, or create a new symlink. Start this new version then
type `T' (a secret key, see topic 4c. Task Area Commands, SORTING) followed by `W'
and `q'. Finally, restart the program with -d0 (zero delay).
Your display will be refreshed at three times the rate of the former top, a 300%
speed advantage. As top climbs the TIME ladder, be as patient as you can while
speculating on whether or not top will ever reach the top.
7b. Bouncing Windows
For these stupid tricks, top needs alternate-display mode.
• With 3 or 4 task displays visible, pick any window other than the last and turn
idle processes Off using the `i' command toggle. Depending on where you applied
`i', sometimes several task displays are bouncing and sometimes it's like an ac-
cordion, as top tries his best to allocate space.
• Set each window's summary lines differently: one with no memory (`m'); another
with no states (`t'); maybe one with nothing at all, just the message line. Then
hold down `a' or `w' and watch a variation on bouncing windows -- hopping win-
dows.
• Display all 4 windows and for each, in turn, set idle processes to Off using the
`i' command toggle. You've just entered the "extreme bounce" zone.
7c. The Big Bird Window
This stupid trick also requires alternate-display mode.
• Display all 4 windows and make sure that 1:Def is the `current' window. Then,
keep increasing window size with the `n' interactive command until all the other
task displays are "pushed out of the nest".
When they've all been displaced, toggle between all visible/invisible windows us-
ing the `_' command toggle. Then ponder this:
is top fibbing or telling honestly your imposed truth?
7d. The Ol' Switcheroo
This stupid trick works best without alternate-display mode, since justification is
active on a per window basis.
• Start top and make COMMAND the last (rightmost) column displayed. If necessary,
use the `c' command toggle to display command lines and ensure that forest view
mode is active with the `V' command toggle.
Then use the up/down arrow keys to position the display so that some truncated
command lines are shown (`+' in last position). You may have to resize your xterm
to produce truncation.
Lastly, use the `j' command toggle to make the COMMAND column right justified.
Now use the right arrow key to reach the COMMAND column. Continuing with the
right arrow key, watch closely the direction of travel for the command lines being
shown.
some lines travel left, while others travel right
eventually all lines will Switcheroo, and move right
8. BUGS
Please send bug reports to ⟨procps@freelists.org⟩.
9. SEE Also
free(1), ps(1), uptime(1), atop(1), slabtop(1), vmstat(8), w(1)
procps-ng May 2018 TOP(1)
Help output
top -h
Súgó kimenet ... ...
procps-ng 3.3.15
Usage:
top -hv | -bcEHiOSs1 -d secs -n max -u|U user -p pid(s) -o field -w [cols]
Related Content
- 146 views